Decentralized Control of Petri Nets

Marian V. Iordache and Panos J. Antsaklis

Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556
iordache.1@nd.edu

June 24, 2003

Outline

The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting

- > 1. Overview of the SBPI
 - 2. The Decentralized Setting
 - 3. Decentralized Admissibility
 - 4. Enforcing D-Admissible Constraints
 - 5. Enforcing D-Inadmissible Constraints
 - (a) Enforcement With Communication
 - (b) Enforcement Without Communication
 - (c) Enforcement With Restricted Communication

Supervision Based on Place Invariants: introduced by several researchers (Giua, Yamalidou, Moody, and others).

The specification of the SBPI is $L\mu \leq b$.

Case I: All transitions are controllable and observable.

Let D be the incidence matrix of the plant Petri net. The supervisor can be designed as a Petri net of incidence matrix

$$D_s = -LD$$

If μ_0 is the initial marking of the plant, the initial marking of the supervisor is

$$\mu_{s0} = b - L\mu_0$$

The places of the supervisor are called *control places*. The closed-loop is a Petri net of incidence matrix

$$D_c = \left[\begin{array}{c} D \\ -LD \end{array} \right]$$

Example

The set of constraints

$$\mu(p_1) + \mu(p_3) \ge 1$$

 $\mu(p_2) + \mu(p_3) \ge 1$

is described by $L\mu \leq b$ with:

$$L = \left[\begin{array}{ccc} -1 & 0 & -1 \\ 0 & -1 & -1 \end{array} \right] \quad b = \left[\begin{array}{cc} -1 \\ -1 \end{array} \right]$$

Target Petri net

The incidence matrix is:

$$D = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 2 & -1 & -1 \end{bmatrix}$$

The supervisor has two control places (as L has two rows):

$$D_s = -LD = \left[\begin{array}{ccc} 1 & 0 & -1 \\ 1 & -1 & 0 \end{array} \right]$$

Supervised Petri net

Example

The initial marking of the supervisor is

$$\mu_{s0} = b - L\mu_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Note that for all reachable markings

$$\mu_s = b - L\mu$$

Target Petri net

This approach is called *supervision based on place invariants*, as it creates for each row of L a place invariant. In particular:

$$\mu(p_1) + \mu(p_3) - \mu(C_1) = 1$$

$$\mu(p_2) + \mu(p_3) - \mu(C_2) = 1$$

Supervised Petri net

Case II: Not all transitions are controllable and observable.

A supervisor should not inhibit uncontrollable transitions or observe firings of unobservable transitions.

Then, the supervisory approach of Case I can still be used if (but not only if)

$$LD_{uo} = 0 \text{ and } LD_{uc} \le 0 \tag{1}$$

where D_{uc} and D_{uo} are the restrictions of the incidence matrix D to the columns of the uncontrollable and unobservable transitions, respectively.

To enforce $L\mu \leq b$ we can proceed as follows:

- 1. If L satisfies (1), find the supervisor as in Case I. Otherwise:
- 2. Transform $L\mu \leq b$ to $L_a\mu \leq b_a$ such that $L_a\mu \leq b_a \Rightarrow L\mu \leq b$ and L_a satisfies (1). Then the supervised PN is obtained as in Case I by enforcing $L_a\mu \leq b_a$ instead of $L\mu \leq b$.

Assume t_1 unobservable and the same specification:

As
$$D=\left[\begin{array}{ccc}-1&1&0\\-1&0&1\\2&-1&-1\end{array}\right]$$
 , $D_{uo}=\left[\begin{array}{ccc}-1\\-1\\2\end{array}\right]$ and D_{uc} is empty.

Note that
$$LD_{uo} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \neq 0$$
.

Therefore, the constraints are transformed to

$$2\mu(p_1) + \mu(p_3) \ge 1 2\mu(p_2) + \mu(p_3) \ge 1$$

enforced by the and control places C_1 and C_2 . t_1 is unobservable

Supervised Petri net

Outline

The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting

- 1. Overview of the SBPI
- > 2. The Decentralized Setting
 - 3. Decentralized Admissibility
 - 4. Enforcing D-Admissible Constraints
 - 5. Enforcing D-Inadmissible Constraints
 - (a) Enforcement With Communication
 - (b) Enforcement Without Communication
 - (c) Enforcement With Restricted Communication

Centralized vs Decentralized

$$T_{c,1} = T_{o,1} = \{t_1, t_2\}$$

$$T_{c,2} = T_{o,2} = \{t_3, t_4\}$$

Specification: $\mu_1 + \mu_3 \leq 1$

$$T_{c,1} = T_{o,1} = \{t_1,t_2\}$$
 $T_{c,2} = T_{o,2} = \{t_3,t_4\}$ $T_{c,3} = \{t_5\}$ $T_{o,3} = \{t_1,t_2,t_3,t_4,t_5\}$

Specification:

$$\mu_1 + \mu_3 \leq 1$$

$$\mu_5 \leq 1$$

$$\mu_6 \leq 1$$

Decentralized Supervision

Given:

- the Petri net model of the system
- ullet the sets of controllable and observable $T_{c,i}$ and $T_{o,i}$, $i=1\dots p$.
- the specification $L\mu \leq b$.

Problem 1: Find the supervisors $S_1 \ldots S_p$ such that

- 1. The joint operation of $S_1 \ldots S_p$ ensures the plant satisfies $L\mu \leq b$.
- 2. Each S_i controls only transitions in $T_{c,i}$ and observes only transitions in $T_{o,i}$.

Decentralized Supervision with Communication

Problem 2: Solve Problem 1 when communication is allowed.

Communication can be used to enable \mathcal{S}_i to

- control $t \in \bigcup_{j \neq i} T_{c,j}$, $t \notin T_{c,i}$. observe $t \in \bigcup_{j \neq i} T_{o,j}$, $t \notin T_{o,i}$.

Remark: Centralized supervision assumes:

$$T_c = \bigcup_{j=1...p} T_{c,j}$$
 and $T_o = \bigcup_{j=1...p} T_{o,j}$

that is, full (maximum) communication!

Optimality criteria:

- minimum communication.
- maximally permissive design.

Outline

The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting

- 1. Overview of the SBPI
- 2. The Decentralized Setting
- > 3. Decentralized Admissibility
 - 4. Enforcing D-Admissible Constraints
 - 5. Enforcing D-Inadmissible Constraints
 - (a) Enforcement With Communication
 - (b) Enforcement Without Communication
 - (c) Enforcement With Restricted Communication

Decentralized Admissibility

In centralized supervision:

- it is (computationally) easy to enforce constraints $L\mu \leq b$ on fully controllable and observable PNs.
- in partially controllable and observable PNs, we say that $L\mu \leq b$ is *c-admissible* if it can be enforced as if the PN were fully controllable and observable.
- constraints $L\mu \leq b$ that are not c-admissible are transformed to a c-admissible form $L_a\mu \leq b_a$ such that $L_a\mu \leq b_a \Rightarrow L\mu \leq b$.

In decentralized supervision:

- we extend c-admissibility to *d-admissibility*, such that
 - d-admissible constraints $L\mu \leq b$ are (computationally) easy to enforce.
 - checking whether a set of constraints is d-admissible is (computationally) tractable.
- the definition we propose allows us to
 - transform constraints $L\mu \leq b$ that are not d-admissible to d-admissible constraints $L_a\mu \leq b_a$ such that $L_a\mu \leq b_a \Rightarrow L\mu \leq b$.
 - enforce constraints that are not d-admissible by enabling communication

Let $L\mu \leq b$, $L \in \mathbb{Z}^{m \times |P|}$ and $b \in \mathbb{Z}^{m \times 1}$ be a set of constraints. A constraint of $L\mu \leq b$ is denoted by $l\mu \leq c$, $l \in \mathbb{Z}^{1 \times |P|}$ and $c \in \mathbb{Z}$.

 $l\mu \leq c$ is **d-admissible** with respect to $(\mathcal{N}, \mu_0, T_{c,1} \dots T_{c,n}, T_{o,1} \dots T_{o,n})$, if there is $\mathcal{C} \subseteq \{1, 2, \dots n\}$, $\mathcal{C} \neq \emptyset$, such that $l\mu \leq c$ is c-admissible with respect to $(\mathcal{N}, \mu_0, T_c, T_o)$, where $T_c = \bigcup_{i \in \mathcal{C}} T_{c,i}$ and $T_o = \bigcap_{i \in \mathcal{C}} T_{o,i}$.

 $L\mu \leq b$ is d-admissible if each of its constraints $l\mu \leq c$ is d-admissible.

- c-admissibility is a special case of d-admissibility, in the sense that if $l\mu \leq c$ is c-admissible w.r.t. $(\mathcal{N}, T_{c,i}, T_{o,i})$, $l\mu \leq c$ is d-admissible (set $\mathcal{C} = \{i\}$).
- $l\mu \leq c$ d-admissible implies
 - If firing a plant-enabled transition t violates $l\mu \leq c$ then $\exists i \in \mathcal{C}$: $t \in T_{c,i}$.
 - All supervisors S_i with $i \in C$ are able to know the value of $c l\mu$.
- an algorithm checking whether a set of constraints is d-admissible is in the paper.

Outline

The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting

- 1. Overview of the SBPI
- 2. The Decentralized Setting
- 3. Decentralized Admissibility
- > 4. Enforcing D-Admissible Constraints
 - 5. Enforcing D-Inadmissible Constraints
 - (a) Enforcement With Communication
 - (b) Enforcement Without Communication
 - (c) Enforcement With Restricted Communication

Enforcement of D-admissible Constraints

Let D and μ_0 be the incidence matrix and the initial marking of a PN \mathcal{N} .

Recall the centralized enforcement of a c-admissible constraint $l\mu \leq c$ on (\mathcal{N}, μ_0) :

- A control place C is generated such that for all t:
 - 1. If $lD(\cdot,t)>0$, then $C\in \bullet t$ and the weight is $W(C,t)=lD(\cdot,t)$.
 - 2. If $lD(\cdot,t)<0$, then $C\in t\bullet$ and the weight is $W(t,C)=-lD(\cdot,t)$.
- The initial marking of C is $c l\mu_0$.

In the decentralized enforcement of a d-admissible constraint $l\mu \leq c$, for all $i \in \mathcal{C}$:

- Define $x_i \in \mathbb{N}$, as the state variable of \mathcal{S}_i .
- Initialize x_i to $c l\mu_0$.
- S_i disables a transition t if $t \in T_{c,i}$ and $x_i < lD(\cdot, t)$.
- If $t \in T_{o,i}$ fires and $lD(\cdot,t) \neq 0$, then $x_i = x_i lD(\cdot,t)$.

It can be proved that the decentralized supervisor $\bigwedge_{i \in \mathcal{C}} \mathcal{S}_i$ enforces $l\mu \leq c$ and that it is equally permissive to the centralized supervisor \mathcal{S} enforcing $l\mu \leq c$ in the fully controllable and observable version of \mathcal{N} .

Desired constraint: $\mu_1 + \mu_3 \leq 1$. Initial marking $\mu_0 = [0, 1, 1, 0]^T$.

Decentralized setting: $T_{c,1}=\{t_1,t_2\}$, $T_{c,2}=\{t_3,t_4\}$, $T_{o,1}=T_{o,2}=\{t_1,t_2,t_3,t_4\}$.

The supervisor S_1 :

- initializes x_1 to 0.
- disables t_1 if $x_1 = 0$
- increments x_1 if t_2 or t_3 fires.
- decrements x_1 if t_1 or t_4 fires.

The supervisor S_2 :

- initializes x_2 to 0.
- disables t_4 if $x_2 = 0$
- increments x_2 if t_2 or t_3 fires.
- decrements x_2 if t_1 or t_4 fires.

A graphical representation is possible, however it may be both helpful and misleading.

Centralized control

Subsystem 1

Subsystem 2

Decentralized control

Outline

The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting

- 1. Overview of the SBPI
- 2. The Decentralized Setting
- 3. Decentralized Admissibility
- 4. Enforcing D-Admissible Constraints
- 5. **Enforcing D-Inadmissible Constraints**
- > (a) Enforcement With Communication
 - (b) Enforcement Without Communication
 - (c) Enforcement With Restricted Communication

 $\mu_1 + \mu_3 \le 1$ is d-inadmissible for $T_{c,1} = T_{o,1} = \{t_1, t_2\}$ and $T_{c,2} = T_{o,2} = \{t_3, t_4\}$.

The constraint becomes d-admissible if the transitions t_1 and t_2 are communicated to subsystem 2 and the transitions t_3 and t_4 to subsystem 1.

Then $T_{o,1} = T_{o,2} = \{t_1, t_2, t_3, t_4\}$, $T_{c,1} = \{t_1, t_2\}$ and $T_{c,2} = \{t_3, t_4\}$.

D-inadmissible constraints can be made admissible by communication:

- 1. Let $T_{c,L} = \bigcup_{i=1...n} T_{c,i}$ and $T_{o,L} = \bigcup_{i=1...n} T_{o,i}$.
- 2. Is the specification c-admissible with respect to $(\mathcal{N}, T_{c,L}, T_{o,L})$? If not, transform it to be c-admissible.
- 3. Let S be the centralized SBPI supervisor enforcing the specification. Let T_c be the set of transitions controlled by S and T_o the set of transitions detected by S.
- 4. Find a set C such that $\bigcup_{i \in C} T_{c,i} \supseteq T_c$.
- 5. The communication can be designed as follows: for all $t \in T_o \setminus (\bigcap_{i \in \mathcal{C}} T_{o,i})$, a subsystem j such that $t \in T_{o,j}$ transmits the firings of t to all supervisors \mathcal{S}_k with $t \notin T_{o,k}$ and $k \in \mathcal{C}$.
- 6. Design the decentralized supervisor according to the algorithm for d-admissible constraints.

In the algorithm

- No communication restrictions considered. These are considered later.
- The supervisor is equally permissive to the centralized supervisor.

In the communication policy proposed in the algorithm:

- The control decisions are taken locally (no control decisions are communicated).
- Assuming broadcast, there is less communication traffic than in the centralized solution, which remotely observes and controls the transitions in T_o and T_c , respectively.
- Better communication policies may be possible. (The optimal policy can be obtained by solving an integer program.)

 $\mu_1 + \mu_3 \le 1$ is d-inadmissible for $T_{c,1} = T_{o,1} = \{t_1, t_2\}$ and $T_{c,2} = T_{o,2} = \{t_3, t_4\}$.

$$T_{c,L} = T_{o,L} = \{t_1, t_2, t_3, t_4\}; \ \mu_1 + \mu_3 \leq 1 \text{ is c-admissible w.r.t. } (\mathcal{N}, T_{c,L}, T_{o,L}).$$

 T_c and T_o found from the centralized SBPI:

Broadcast: t_1 , t_2 , t_3 , and t_4 . Remotely control: t_1 and t_4 .

DECENTRALIZED

Broadcast: t_1 and t_2 . Remotely control: —

Broadcast: t_3 and t_4 . Remotely control: —

Still another solution ...

 $p_3 \bullet p_4$

Broadcast: — Remotely control: t_4 .

Broadcast: t_3 and t_4 . Remotely control: —

In general, several equally permissive and decentralized solutions are possible.

The optimal solution depends on the relative cost of broadcast/remote control.

Outline

The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting

- 1. Overview of the SBPI
- 2. The Decentralized Setting
- 3. Decentralized Admissibility
- 4. Enforcing D-Admissible Constraints
- 5. **Enforcing D-Inadmissible Constraints**
 - (a) Enforcement With Communication
- > (b) Enforcement Without Communication
 - (c) Enforcement With Restricted Communication

Enforcement of D-Inadmissible Constraints via Transformations

Specification: $L\mu \leq b$ (d-inadmissible)

Goal: Find $L_1\mu \leq b_1 \ldots L_m\mu \leq b_m$ that are d-admissible such that

$$(L_1\mu \le b_1 \land L_2\mu \le b_2 \land \dots L_m\mu \le b_m) \Rightarrow L\mu \le b \tag{2}$$

Remarks:

- Each $L_i \mu \leq b_i$ has a different set C_i .
- The sets C_i are given.
- Any solution can be found if all sets C_i are given. If so, $m=2^n-1$.
- However, we could discard the sets \mathcal{C}_i with $T_o^{(i)} = \bigcap_{i \in \mathcal{C}_i} T_{o,i} = \emptyset$.
- In practice, we expect most sets \mathcal{C}_i to have $T_o^{(i)} = \emptyset$.

We propose to simplify (1) to:

$$[(L_1 + L_2 + \dots L_m)\mu \le (b_1 + b_2 + \dots b_m)] \Rightarrow L\mu \le b \tag{3}$$

Enforcement of D-Inadmissible Constraints via Transformations

The following parametrization is used:

$$L_1 + L_2 + \dots L_m = R_1 + R_2 L \tag{4}$$

$$b_1 + b_2 + \dots b_m = R_2(b+1) - 1$$
 (5)

for $R_1 \in \mathbb{N}^{m \times |P|}$, $R_2 \in \mathbb{N}^{m \times m}$ such that $R_2 > 0$ and R_2 is diagonal.

Admissibility constraints

$$L_i D(\cdot, T_{uc}^{(i)}) \leq 0 \tag{6}$$

$$L_i D(\cdot, T_{uo}^{(i)}) = 0 (7)$$

where
$$T_{uc}^{(i)} = \bigcap_{i \in \mathcal{C}_i} T_{uc,i}$$
 and $T_{uo}^{(i)} = \bigcup_{i \in \mathcal{C}_i} T_{uo,i}$.

Then the problem is to <u>find a feasibile solution of (4–7)</u>. The unknowns are R_1 , R_2 , L_i , and b_i , and integer programming can be used to find them.

Drawbacks: The computational complexity of ILP and the fact that a permissivity requirement seems rather hard to be encoded as linear constraints.

Specification: $\mu_1 + \mu_3 \le 2$; $T_{c,1} = T_{o,1} = \{t_1, t_2\}$ and $T_{c,2} = T_{o,2} = \{t_3, t_4\}$.

Take m = 2, $C_1 = \{1\}$ and $C_2 = \{2\}$.

Decentralized solution: $\mu_1 \leq 1$ (as $L_1 \mu \leq b_1$) and $\mu_3 \leq 1$ (as $L_2 \mu \leq b_2$).

Outline

The goal of the paper is to extend the supervision based on place invariants (SBPI) to a decentralized setting

- 1. Overview of the SBPI
- 2. The Decentralized Setting
- 3. Decentralized Admissibility
- 4. Enforcing D-Admissible Constraints
- 5. **Enforcing D-Inadmissible Constraints**
 - (a) Enforcement With Communication
 - (b) Enforcement Without Communication
- > (c) Enforcement With Restricted Communication

Restricted Communication

The previous ILP approach can be used with communication extensions.

Note that: - Communication allows improving permissivity.

- Some constraints are not enforcible without communication.

Extensions:

- The binary variables α_{ij} and ε_{ij} are introduced.
 - $\alpha_{ij} = 1$ iff the firing of t_j is announced to the supervisors of C_i .
 - $\varepsilon_{ij} = 1$ iff a supervisor from C_i remotely controls t_j .
- In particular, in the broadcast case
 - $\alpha_{ij} = \alpha_j \ \forall i = 1 \dots m \ (\alpha_j = 1 \ \text{iff each firing of} \ t_j \ \text{is broadcast, i.e., all supervisors are announced when} \ t_j \ \text{fires}$).
 - $\varepsilon_{ij} = \varepsilon_j \ \forall i = 1 \dots m \ (\varepsilon_j = 1 \text{ iff all supervisors are allowed to remotely control } t_i).$
- Communication constraints can be incorporated as expressions of α_{ij} and ε_{ij} .

Restricted Communication

- ullet Define B_U^i and B_L^i as upper and lower bounds of L_iD .
- Let $A = [\alpha_{ij}]$ and $E = [\varepsilon_{ij}]$.

The admissibility constraints $L_iD(\cdot,T_{uc}^{(i)})\leq 0$ and $L_iD(\cdot,T_{uo}^{(i)})=0$ are replaced by:

$$L_i D(\cdot, T_{uo}^{(i)}) \le [B_U^i diag(A(i, \cdot))]|_{T_{uo}^{(i)}}$$
 (8)

$$L_i D(\cdot, T_{uo}^{(i)}) \ge [B_L^i diag(A(i, \cdot))]|_{T_{uo}^{(i)}}$$
 (9)

$$L_i D(\cdot, T_{uc}^{(i)}) \le [B_U^i diag(E(i, \cdot))]|_{T_{uc}^{(i)}}$$
 (10)

Given the weight matrices C and F, the objective of the ILP can be set to

$$\min_{A,E,L_i,b_i,R_1,R_2} Trace(CA+FE) \tag{11}$$

to minimize communication.

C/F may reflect statistics on how often the transitions t_i are fired/require control.

Manufacturing Example (Adapted from [Lin, 1990])

Machines: M_1 and M_2 .

Buffers: $B_1 \dots B_4$. Robots: $H_1 \dots H_4$.

Two possible manufacturing sequences:

- $\gamma_1 \tau_1 \pi_1 \alpha_3 \tau_3 \pi_3 \alpha_1 \eta_1$
- $\gamma_2 \tau_4 \pi_4 \alpha_2 \tau_2 \pi_2 \alpha_4 \eta_2$

 B_1 and B_2 share common buffer space.

 B_3 and B_4 share also common space.

Decentralized Supervision

Avoid buffer overflow: $\mu_3 + \mu_{13} \le 4$ and $\mu_6 + \mu_{10} \le 4$.

Take
$$m=4$$
 and $\mathcal{C}_i=\{i\},\,i=1\ldots 4.$

Solution without communication:

$$\mu_2 + \mu_3 \le 2 \qquad \text{(sub-1)}$$

$$\mu_5 + \mu_6 \le 2 \qquad \text{(sub-2)}$$

$$\mu_9 + \mu_{10} \le 2$$
 (sub-3)

$$\mu_{12} + \mu_{13} \le 2$$
 (sub-4)

Decentralized Supervision

Fairness: $v_8 - v_{16} \le 2$ and $v_{16} - v_8 \le 2$.

(v_i : the number of firings of t_i .)

No acceptable solution without communication!

Result:

subsystem 2: broadcast t_8 and enforce

$$\mu_5 + \mu_6 + \mu_7 + v_8 - v_{16} \leq 2$$
 subsystem 4: broadcast t_{16} and enforce $v_{16} - v_8 \leq 2$

Conclusion

This paper extends the SBPI to the decentralized setting.

The supervisors can be designed by constraint transformation for:

- no communication
- restricted communication
- minimal communication

This work shows that the decentralized supervision of PNs can be tractable.

On the negative side:

- Our ILP approach is suboptimal.
- Difficult to include permissivity requirements in the ILP.