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Overview of the Supervision Based on Place Invariants

Supervision Based on Place Invariants: introduced by several researchers (Giua, Yamalidou,

Moody, and others).

The specification of the SBPI is Lµ ≤ b .

Case I: All transitions are controllable and observable.

Let D be the incidence matrix of the plant Petri net. The supervisor can be designed as a

Petri net of incidence matrix

Ds = −LD

If µ0 is the initial marking of the plant, the initial marking of the supervisor is

µs0 = b − Lµ0

The places of the supervisor are called control places. The closed-loop is a Petri net of

incidence matrix

Dc =

[
D

−LD

]
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Overview of the Supervision Based on Place Invariants Example

The set of constraints

µ(p1) + µ(p3) ≥ 1

µ(p2) + µ(p3) ≥ 1

is described by Lµ ≤ b with:

L =

[ −1 0 −1

0 −1 −1

]
b =

[ −1

−1

]

The incidence matrix is:

D =


 −1 1 0

−1 0 1

2 −1 −1




The supervisor has two control places (as L has two rows):

Ds = −LD =

[
1 0 −1

1 −1 0

]

Target Petri net

Supervised Petri net
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Overview of the Supervision Based on Place Invariants Example

The initial marking of the supervisor is

µs0 = b − Lµ0 =

[
1

1

]

Note that for all reachable markings

µs = b − Lµ

This approach is called supervision based on place invariants,

as it creates for each row of L a place invariant. In particular:

µ(p1) + µ(p3) − µ(C1) = 1

µ(p2) + µ(p3) − µ(C2) = 1

Target Petri net

Supervised Petri net
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Overview of the Supervision Based on Place Invariants

Case II: Not all transitions are controllable and observable.

A supervisor should not inhibit uncontrollable transitions or observe firings of unobservable

transitions.

Then, the supervisory approach of Case I can still be used if (but not only if)

LDuo = 0 and LDuc ≤ 0 (1)

where Duc and Duo are the restrictions of the incidence matrix D to the columns of the

uncontrollable and unobservable transitions, respectively.

To enforce Lµ ≤ b we can proceed as follows:

1. If L satisfies (1), find the supervisor as in Case I. Otherwise:

2. Transform Lµ ≤ b to Laµ ≤ ba such that Laµ ≤ ba ⇒ Lµ ≤ b and La satisfies

(1). Then the supervised PN is obtained as in Case I by enforcing Laµ ≤ ba instead

of Lµ ≤ b.
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Overview of the Supervision Based on Place Invariants Example

Assume t1 unobservable and the same specification:

µ(p1) + µ(p3) ≥ 1

µ(p2) + µ(p3) ≥ 1

(
L =

[ −1 0 −1

0 −1 −1

]
b =

[ −1

−1

])

As D =


 −1 1 0

−1 0 1

2 −1 −1


 , Duo =


 −1

−1

2


 and Duc is empty.

Note that LDuo =

[ −1

−1

]
6= 0.

Therefore, the constraints

are transformed to

2µ(p1) + µ(p3) ≥ 1

2µ(p2) + µ(p3) ≥ 1

and enforced by the

control places C1 and C2. 1

Supervised Petri netTarget Petri net
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Centralized vs Decentralized

Network Connection

. . .

SUPERVISOR

PLANTPLANTPLANT

Network Connection

. . .
PLANTPLANT

SUPERVISOR SUPERVISORSUPERVISOR

PLANT
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Decentralized Supervision Example 1

Network Connection

Parts

bin area

Assembly

bin

Parts

ComputerComputer

1

t 2

t 3

t 4

t

4p3p1pp2

Tc,1 = To,1 = {t1, t2}

Tc,2 = To,2 = {t3, t4}

Specification: µ1 + µ3 ≤ 1
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Decentralized Supervision Example 2

Network Connection

bin

PartsAssembly

areabin

Parts

ComputerComputer Computer

t
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Tc,1 = To,1 = {t1, t2}

Tc,2 = To,2 = {t3, t4}

Tc,3 = {t5}

To,3 = {t1, t2, t3, t4, t5}

Specification:

µ1 + µ3 ≤ 1

µ5 ≤ 1

µ6 ≤ 1
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Decentralized Supervision

Given:

• the Petri net model of the system

• the sets of controllable and observable Tc,i and To,i, i = 1 . . . p.

• the specification Lµ ≤ b.

Problem 1: Find the supervisors S1 . . . Sp such that

1. The joint operation of S1 . . . Sp ensures the plant satisfies Lµ ≤ b.

2. Each Si controls only transitions in Tc,i and observes only transitions in To,i.
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Decentralized Supervision with Communication

Problem 2: Solve Problem 1 when communication is allowed.

Communication can be used to enable Si to

• control t ∈ ⋃
j 6=i

Tc,j, t /∈ Tc,i.

• observe t ∈ ⋃
j 6=i

To,j, t /∈ To,i.

Remark: Centralized supervision assumes:

Tc =
⋃

j=1...p

Tc,j and To =
⋃

j=1...p

To,j

that is, full (maximum) communication!

Optimality criteria:

• minimum communication.

• maximally permissive design.
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Decentralized Admissibility

In centralized supervision:

• it is (computationally) easy to enforce constraints Lµ ≤ b on fully controllable and

observable PNs.

• in partially controllable and observable PNs, we say that Lµ ≤ b is c-admissible if it

can be enforced as if the PN were fully controllable and observable.

• constraints Lµ ≤ b that are not c-admissible are transformed to a c-admissible form

Laµ ≤ ba such that Laµ ≤ ba ⇒ Lµ ≤ b.

In decentralized supervision:

• we extend c-admissibility to d-admissibility, such that

– d-admissible constraints Lµ ≤ b are (computationally) easy to enforce.

– checking whether a set of constraints is d-admissible is (computationally) tractable.

• the definition we propose allows us to

– transform constraints Lµ ≤ b that are not d-admissible to d-admissible constraints

Laµ ≤ ba such that Laµ ≤ ba ⇒ Lµ ≤ b.

– enforce constraints that are not d-admissible by enabling communication
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Decentralized Admissibility Definition

Let Lµ ≤ b, L ∈ Z
m×|P | and b ∈ Z

m×1 be a set of constraints. A constraint of Lµ ≤ b

is denoted by lµ ≤ c, l ∈ Z
1×|P | and c ∈ Z.

lµ ≤ c is d-admissible with respect to (N , µ0, Tc,1 . . . Tc,n, To,1 . . . To,n), if there

is C ⊆ {1, 2, . . . n}, C 6= ∅, such that lµ ≤ c is c-admissible with respect to

(N , µ0, Tc, To), where Tc =
⋃
i∈C

Tc,i and To =
⋂
i∈C

To,i.

Lµ ≤ b is d-admissible if each of its constraints lµ ≤ c is d-admissible.

• c-admissibility is a special case of d-admissibility, in the sense that if lµ ≤ c is

c-admissible w.r.t. (N , Tc,i, To,i), lµ ≤ c is d-admissible (set C = {i}).

• lµ ≤ c d-admissible implies

– If firing a plant-enabled transition t violates lµ ≤ c then ∃i ∈ C: t ∈ Tc,i.

– All supervisors Si with i ∈ C are able to know the value of c − lµ.

• an algorithm checking whether a set of constraints is d-admissible is in the paper.
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Enforcement of D-admissible Constraints

Let D and µ0 be the incidence matrix and the initial marking of a PN N .

Recall the centralized enforcement of a c-admissible constraint lµ ≤ c on (N , µ0):

• A control place C is generated such that for all t:

1. If lD(·, t) > 0, then C ∈ •t and the weight is W (C, t) = lD(·, t).

2. If lD(·, t) < 0, then C ∈ t• and the weight is W (t, C) = −lD(·, t).

• The initial marking of C is c − lµ0.

In the decentralized enforcement of a d-admissible constraint lµ ≤ c, for all i ∈ C:

• Define xi ∈ N, as the state variable of Si.

• Initialize xi to c − lµ0.

• Si disables a transition t if t ∈ Tc,i and xi < lD(·, t).

• If t ∈ To,i fires and lD(·, t) 6= 0, then xi = xi − lD(·, t).

It can be proved that the decentralized supervisor
∧

i∈C Si enforces lµ ≤ c and that it is

equally permissive to the centralized supervisor S enforcing lµ ≤ c in the fully controllable

and observable version of N .
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Enforcement of D-Admissible Constraints Example

Desired constraint: µ1 + µ3 ≤ 1. Initial marking µ0 = [0, 1, 1, 0]T .

Decentralized setting: Tc,1 = {t1, t2}, Tc,2 = {t3, t4}, To,1 = To,2 = {t1, t2, t3, t4}.

The supervisor S1:

• initializes x1 to 0.

• disables t1 if x1 = 0

• increments x1 if t2 or t3 fires.

• decrements x1 if t1 or t4 fires.

The supervisor S2:

• initializes x2 to 0.

• disables t4 if x2 = 0

• increments x2 if t2 or t3 fires.

• decrements x2 if t1 or t4 fires.

A graphical representation is possible, however it may be both helpful and misleading.

Decentralized controlCentralized control
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Enforcement of D-Inadmissible Constraints via Communication

µ1 + µ3 ≤ 1 is d-inadmissible for Tc,1 = To,1 = {t1, t2} and Tc,2 = To,2 = {t3, t4}.

Subsystem 2Subsystem 1Global system

3 p4

t 3

t 4

pp2

4t 2

p

1

t
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t3t

2t

1t

4p3p1pp2

The constraint becomes d-admissible if the transitions t1 and t2 are communicated to

subsystem 2 and the transitions t3 and t4 to subsystem 1.

Then To,1 = To,2 = {t1, t2, t3, t4}, Tc,1 = {t1, t2} and Tc,2 = {t3, t4}.
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Enforcement of D-Inadmissible Constraints via Communication

D-inadmissible constraints can be made admissible by communication:

1. Let Tc,L =
⋃

i=1...n

Tc,i and To,L =
⋃

i=1...n

To,i.

2. Is the specification c-admissible with respect to (N , Tc,L, To,L)? If not, transform it

to be c-admissible.

3. Let S be the centralized SBPI supervisor enforcing the specification. Let Tc be the set

of transitions controlled by S and To the set of transitions detected by S.

4. Find a set C such that
⋃
i∈C

Tc,i ⊇ Tc.

5. The communication can be designed as follows: for all t ∈ To\(
⋂
i∈C

To,i), a subsystem j

such that t ∈ To,j transmits the firings of t to all supervisors Sk with t /∈ To,k and

k ∈ C.

6. Design the decentralized supervisor according to the algorithm for d-admissible

constraints.
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Enforcement of D-Inadmissible Constraints via Communication

In the algorithm

• No communication restrictions considered. These are considered later.

• The supervisor is equally permissive to the centralized supervisor.

In the communication policy proposed in the algorithm:

• The control decisions are taken locally (no control decisions are communicated).

• Assuming broadcast, there is less communication traffic than in the centralized solution,

which remotely observes and controls the transitions in To and Tc, respectively.

• Better communication policies may be possible. (The optimal policy can be obtained

by solving an integer program.)
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Enforcement of D-Inadmissible Constraints via Communication

µ1 + µ3 ≤ 1 is d-inadmissible for Tc,1 = To,1 = {t1, t2} and Tc,2 = To,2 = {t3, t4}.

Subsystem 2Subsystem 1Global system

3 p4
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Tc,L = To,L = {t1, t2, t3, t4}; µ1 + µ3 ≤ 1 is c-admissible w.r.t. (N , Tc,L, To,L).

Tc and To found from the centralized SBPI:

C

2p p1 p3 p4

t 1 t 3

t 4t 2

Tc = {t1, t4} To = {t1, t2, t3, t4}

C = {1, 2}
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Enforcement of D-Inadmissible Constraints via Communication

Network Connection

CENTRALIZED

PLANTPLANT

SUPERVISOR

C

2p p1 p3 p4

t 1 t 3
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Broadcast: t1, t2, t3, and t4.

Remotely control: t1 and t4.
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Enforcement of D-Inadmissible Constraints via Communication

Still another solution ...

C C

2p

t 3

t 4

t 1
p1

t 2

p3

t 3

t 4

p4

1 2

Broadcast: —

Remotely control: t4.

Broadcast: t3 and t4.

Remotely control: —

In general, several equally permissive and decentralized solutions are possible.

The optimal solution depends on the relative cost of broadcast/remote control.
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Enforcement of D-Inadmissible Constraints via Transformations

Specification: Lµ ≤ b (d-inadmissible)

Goal: Find L1µ ≤ b1 . . . Lmµ ≤ bm that are d-admissible such that

(L1µ ≤ b1 ∧ L2µ ≤ b2 ∧ . . . Lmµ ≤ bm) ⇒ Lµ ≤ b (2)

Remarks:

- Each Liµ ≤ bi has a different set Ci.

- The sets Ci are given.

- Any solution can be found if all sets Ci are given. If so, m = 2n − 1.

- However, we could discard the sets Ci with T (i)
o =

⋂
i∈Ci

To,i = ∅.

- In practice, we expect most sets Ci to have T (i)
o = ∅.

We propose to simplify (1) to:

[(L1 + L2 + . . . Lm)µ ≤ (b1 + b2 + . . . bm)] ⇒ Lµ ≤ b (3)
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Enforcement of D-Inadmissible Constraints via Transformations

The following parametrization is used:
L1 + L2 + . . . Lm = R1 + R2L (4)

b1 + b2 + . . . bm = R2(b + 1) − 1 (5)

for R1 ∈ N
m×|P |, R2 ∈ N

m×m such that R2 > 0 and R2 is diagonal.

Admissibility constraints

LiD(·, T
(i)
uc ) ≤ 0 (6)

LiD(·, T (i)
uo ) = 0 (7)

where T (i)
uc =

⋂
i∈Ci

Tuc,i and T (i)
uo =

⋃
i∈Ci

Tuo,i.

Then the problem is to find a feasibile solution of (4–7). The unknowns are R1, R2, Li,

and bi, and integer programming can be used to find them.

Drawbacks: The computational complexity of ILP and the fact that a permissivity

requirement seems rather hard to be encoded as linear constraints.
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Example

Specification: µ1 + µ3 ≤ 2; Tc,1 = To,1 = {t1, t2} and Tc,2 = To,2 = {t3, t4}.

Subsystem 1 Subsystem 2Global system

2

4t

3t

2t

1t

4p3p1pp

4t

3t

4p3p

2t

1t

1pp2

Take m = 2, C1 = {1} and C2 = {2}.

Decentralized solution: µ1 ≤ 1 (as L1µ ≤ b1) and µ3 ≤ 1 (as L2µ ≤ b2).
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Restricted Communication

The previous ILP approach can be used with communication extensions.

Note that: - Communication allows improving permissivity.

- Some constraints are not enforcible without communication.

Extensions:

• The binary variables αij and εij are introduced.

– αij = 1 iff the firing of tj is announced to the supervisors of Ci.

– εij = 1 iff a supervisor from Ci remotely controls tj.

• In particular, in the broadcast case

– αij = αj ∀i = 1 . . . m (αj = 1 iff each firing of tj is broadcast, i.e., all

supervisors are announced when tj fires).

– εij = εj ∀i = 1 . . . m (εj = 1 iff all supervisors are allowed to remotely control

tj).

• Communication constraints can be incorporated as expressions of αij and εij.
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Restricted Communication

• Define Bi
U and Bi

L as upper and lower bounds of LiD.

• Let A = [αij] and E = [εij].

The admissibility constraints LiD(·, T (i)
uc ) ≤ 0 and LiD(·, T (i)

uo ) = 0 are replaced by:

LiD(·, T (i)
uo ) ≤ [Bi

Udiag(A(i, ·))]|
T

(i)
uo

(8)

LiD(·, T
(i)
uo ) ≥ [B

i
Ldiag(A(i, ·))]|

T
(i)
uo

(9)

LiD(·, T
(i)
uc ) ≤ [B

i
Udiag(E(i, ·))]|

T
(i)
uc

(10)

Given the weight matrices C and F , the objective of the ILP can be set to

min
A,E,Li,bi,R1,R2

Trace(CA + FE) (11)

to minimize communication.

C/F may reflect statistics on how often the transitions tj are fired/require control.
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Manufacturing Example (Adapted from [Lin, 1990])

Machines: M1 and M2.

Buffers: B1 . . . B4.

Robots: H1 . . . H4.

Two possible manufacturing

sequences:

- γ1τ1π1α3τ3π3α1η1

- γ2τ4π4α2τ2π2α4η2

B1 and B2 share common

buffer space.

B3 and B4 share also

common space.

3H
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4H2B1B

2H1H
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2π1π

1τ 2τ
2α 1α

3τ4τ

π
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2γ η 2

1γ
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3π4

η 1M1M τ 1 H1 π 1 α 3B 1 M2 τ 3 H π 3 B 3 α 1 1

[      ] [      ] [      ] [      ] [      ][      ][      ]

[      ]

[      ]

[      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ] [      ]

[      ][      ] [      ] [      ] [      ] [      ] [      ] [      ]

3

2τ 1 2α 4B 4π γ 2M2τ 4H4M

1γ

2M
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15t t13p 10 8p9pt14 t 13 t 12 11 t t10
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Decentralized Supervision

Tc,1 = {t2} To,1 = {t2, t3, t4}
Tc,2 = {t5} To,2 = {t5, t6, t7, t8}
Tc,3 = {t10} To,3 = {t10, t11, t12}
Tc,4 = {t13, t16} To,4 = {t13, t14, t15, t16}

Avoid buffer overflow: µ3 + µ13 ≤ 4 and µ6 + µ10 ≤ 4.

γ

1η1α3π33α1π1τ1γ

2τ 2 4τη 2 4α 2π 2α 4π

τ[      ] [      ] [      ] [      ]

[      ] [      ] [      ] [      ][      ] [      ][      ] [      ]

[      ][      ][      ][      ]
1t 7p2t t 3 t 4 t 5 t 6 t 7

t

p15

p16

p1 2p p3 p4 p5 p6 8

12 t 11

1C

4C 3C

14p t 1011p 9t 16 t

t

C 2

p12 p10 p9 p8p13t 15 t 14 t 13
Take m = 4 and

Ci = {i}, i = 1 . . . 4.

Solution without commu-

nication:

µ2 + µ3 ≤ 2 (sub-1)

µ5 + µ6 ≤ 2 (sub-2)

µ9 + µ10 ≤ 2 (sub-3)

µ12 + µ13 ≤ 2 (sub-4)
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Decentralized Supervision

Tc,1 = {t2} To,1 = {t2, t3, t4}
Tc,2 = {t5} To,2 = {t5, t6, t7, t8}
Tc,3 = {t10} To,3 = {t10, t11, t12}
Tc,4 = {t13, t16} To,4 = {t13, t14, t15, t16}

Fairness: v8 − v16 ≤ 2 and v16 − v8 ≤ 2. (vi: the number of firings of ti.)

π 2α 42η τ 4τ

[      ] [      ] [      ] [      ] [      ] [      ] [      ]

[      ] [      ] [      ] [      ] [      ][      ] [      ][      ]

[      ]

2

1 τ 1 π 1 α η13 τ 3 π 3 α

2

1

γ 2π 4α

γ
p5 p6 p7t 1 t 2 t 4

p12 p10 p9

p15

p16

p1 2p p3 p3

13 t 12 t 11 t 10 t 9t 16 p11p14

C 5 C 6

t 4 t 5 t 6 t 7 t 8

p8p13t 15 t 14 t

No acceptable solution

without communication!

Result:

subsystem 2: broadcast t8

and enforce

µ5+µ6+µ7+v8−v16 ≤ 2

subsystem 4: broadcast

t16 and enforce

v16 − v8 ≤ 2
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Conclusion

This paper extends the SBPI to the decentralized setting.

The supervisors can be designed by constraint transformation for:

- no communication

- restricted communication

- minimal communication

This work shows that the decentralized supervision of PNs can be tractable.

On the negative side:

- Our ILP approach is suboptimal.

- Difficult to include permissivity requirements in the ILP.
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