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Introduction Background

Multiprogramming involves multiple tasks executed concurrently.

– Tasks may have to synchronize.
– Tasks may need to get exclusive access to shared resources.
– Tasks may not have the same precedence.
– Wait time should be bounded.
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Introduction Approach

• Represent concurrency constraints in the supervisory contol framework.

• Solve the supervisory control problem.

• Implement supervisory policy in concurrency control code.

• ACTS: generates concurrency control code for concurrent programs.

• PN based supervisory control is implemented.
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Specification Example

Synchronization problem (adapted from [Downey, 2008]):

• Shared data accessed by reader, inserter, and deleter processes.

• At any time, only one inserter may modify the data.

• At any time, only one deleter may modify the data.

• Readers and inserters may not access the shared data at the same time
as deleters.
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Specification Example

• Concurrent entities have a DES structure.

• A place represents an execution stage of the entity.

• Each place is associated with a segment of code.

• Concurrent entities with the same code correspond to different tokens of the same PN.

1. thread READER {

2. places: pv pc pd;

3. transitions: tv tc td;

4.

5. (pv, tv, pc); (pc, tc, pd);

6. (pd, td, pv);

7. } READER
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t

The ACTS Software and its Supervisory Control Framework 5



Specification Example

• A DES is associated with a group of entities.

• The number of tokens equals the number of entities in a group.

• A DES does not have to preserve the number of tokens.

// create identical DES for inserter entities

1. INSERTER = READER;

// create identical DES for deleter entities

2. DELETER = READER;

// define initial markings

3. initialize: READER(pv:4,pd:1);

4. initialize: INSERTER(pv:3);

5. initialize: DELETER(pv:3); INSERTER

p pi,c i,d

pi,v

t i,v t i,d

t i,c
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Specification Example

The constraints are described by linear inequalities.

• Only one inserter may be in the critical section.

µi,c ≤ 1 (1)

• Only one deleter may be in the critical section.

• Readers and inserters may not be in the critical section at the same time as a deleter.

6µd,c + µr,c + µi,c ≤ 6 (2)

• A deleter should not wait indefinitely to access the critical section.

• Bounded wait requires more than just inequalities ...

// Inequality constraints

1. INSERTER.pc <= 1

2. 6*DELETER.pc + READER.pc + INSERTER.pc <= 6
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Specification Example

For bounded wait:

– define supervisor component

– synchronize t1 and t2 with tr,v.

– require
q1 ≤ µd,v (3)

µa ≤ 5 (4)

3q2 + 3qo ≤ 3 − µd,v + 3µd,c (5)
o

t 2t 1

pa

t

1. supervisor sc { // Defines supervisor component

2. places: pa;

3. transitions: t0 t1 t2;

4. (t1, pa); (pa, t0); }

5. sync sc.t1 sc.t2 READER.tv // Synchronizes transitions

6. sc.q.t1 <= DELETER.pv

7. sc.pa <= 5

8. 3*sc.q.t2 + 3*sc.q.t0 <= 3 - DELETER.pv + 3*DELETER.pc
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Specification Example
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Properties

Note: PN + user code = HPN

A supervisory policy enforcing inequality constraints on the underlying PN
will enforce the constraints also when applied to the HPN.

Assuming no uncontrollable transitions and no unobservable transitions, a
least restrictive supervisory policy enforcing inequality constraints on the
underlying PN will be least restrictive also when applied to the HPN.
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Properties

Uncontrollable and/or unobservable transitions may arise, for instance:

• as critical transitions that should not be delayed;

• in a decentralized context.

If the HPN has uncontrollable and/or unobservable transitions, a least
restrictive supervisory policy enforcing inequality constraints on the
underlying PN may not be least restrictive when applied to the HPN.
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Properties

A PN model is said to be normal if it represents explicitly choice.
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Properties

The bounded wait property is related to liveness.

If the underlying PN of an HPN does not represent explicitly choice,
a supervisory policy preventing deadlock or enforcing T -liveness in the
underlying PN may not prevent deadlock in the HPN.

Consider a HPN in which the underlying PN represents explicitly choice.
A supervisory policy preventing deadlock in the underlying PN will prevent
deadlock also in the HPN.

In general, additional conditions are required to guarantee bounded wait.

Liveness < Responsiveness < With bounded wait
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Conclusions

SC can be applied to concurrency control.

ACTS: free open-source software applying SC to concurrent programming.

In general, traditional SC methods may be suboptimal in the context of
uncontrollable and/or unobservable transitions.

Excepting special cases, traditional SC methods for liveness enforcement
are insufficient.
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