
The ACTS Software and its Supervisory Control
Framework

Marian V. Iordache

Department of Engineering

LeTourneau University

Longview, TX 75607-7001

Panos J. Antsaklis

Department of Electrical Engineering

University of Notre Dame

Notre Dame, IN 46556

December 13, 2012

The ACTS Software and its Supervisory Control Framework 1



Introduction Background

Multiprogramming involves multiple tasks executed concurrently.

– Tasks may have to synchronize.
– Tasks may need to get exclusive access to shared resources.
– Tasks may not have the same precedence.
– Wait time should be bounded.

The ACTS Software and its Supervisory Control Framework 2



Introduction Approach

• Represent concurrency constraints in the supervisory contol framework.

• Solve the supervisory control problem.

• Implement supervisory policy in concurrency control code.

• ACTS: generates concurrency control code for concurrent programs.

• PN based supervisory control is implemented.

The ACTS Software and its Supervisory Control Framework 3



Specification Example

Synchronization problem (adapted from [Downey, 2008]):

• Shared data accessed by reader, inserter, and deleter processes.

• At any time, only one inserter may modify the data.

• At any time, only one deleter may modify the data.

• Readers and inserters may not access the shared data at the same time
as deleters.

The ACTS Software and its Supervisory Control Framework 4



Specification Example

• Concurrent entities have a DES structure.

• A place represents an execution stage of the entity.

• Each place is associated with a segment of code.

• Concurrent entities with the same code correspond to different tokens of the same PN.

1. thread READER {

2. places: pv pc pd;

3. transitions: tv tc td;

4.

5. (pv, tv, pc); (pc, tc, pd);

6. (pd, td, pv);

7. } READER

r,v

r,c

pr,dr,cp

r,dt

r,vp

t

t

The ACTS Software and its Supervisory Control Framework 5



Specification Example

• A DES is associated with a group of entities.

• The number of tokens equals the number of entities in a group.

• A DES does not have to preserve the number of tokens.

// create identical DES for inserter entities

1. INSERTER = READER;

// create identical DES for deleter entities

2. DELETER = READER;

// define initial markings

3. initialize: READER(pv:4,pd:1);

4. initialize: INSERTER(pv:3);

5. initialize: DELETER(pv:3); INSERTER

p pi,c i,d

pi,v

t i,v t i,d

t i,c

The ACTS Software and its Supervisory Control Framework 6



Specification Example

The constraints are described by linear inequalities.

• Only one inserter may be in the critical section.

µi,c ≤ 1 (1)

• Only one deleter may be in the critical section.

• Readers and inserters may not be in the critical section at the same time as a deleter.

6µd,c + µr,c + µi,c ≤ 6 (2)

• A deleter should not wait indefinitely to access the critical section.

• Bounded wait requires more than just inequalities ...

// Inequality constraints

1. INSERTER.pc <= 1

2. 6*DELETER.pc + READER.pc + INSERTER.pc <= 6

The ACTS Software and its Supervisory Control Framework 7



Specification Example

For bounded wait:

– define supervisor component

– synchronize t1 and t2 with tr,v.

– require
q1 ≤ µd,v (3)

µa ≤ 5 (4)

3q2 + 3qo ≤ 3 − µd,v + 3µd,c (5)
o

t 2t 1

pa

t

1. supervisor sc { // Defines supervisor component

2. places: pa;

3. transitions: t0 t1 t2;

4. (t1, pa); (pa, t0); }

5. sync sc.t1 sc.t2 READER.tv // Synchronizes transitions

6. sc.q.t1 <= DELETER.pv

7. sc.pa <= 5

8. 3*sc.q.t2 + 3*sc.q.t0 <= 3 - DELETER.pv + 3*DELETER.pc

The ACTS Software and its Supervisory Control Framework 8



Specification Example

4

3
3

3

6

6

5

r,dt

r,dp

p

r,v,2tr,v,1t
d,vt

d,cp

d,ct

d,dt

d,vp

i,ct

i,cp
i,dp

i,vt
i,dt

i,vp

ot

r,v

p
ap

r,cp

r,ct

d,d

The ACTS Software and its Supervisory Control Framework 9



Properties

Note: PN + user code = HPN

A supervisory policy enforcing inequality constraints on the underlying PN
will enforce the constraints also when applied to the HPN.

Assuming no uncontrollable transitions and no unobservable transitions, a
least restrictive supervisory policy enforcing inequality constraints on the
underlying PN will be least restrictive also when applied to the HPN.

The ACTS Software and its Supervisory Control Framework 10



Properties

Uncontrollable and/or unobservable transitions may arise, for instance:

• as critical transitions that should not be delayed;

• in a decentralized context.

If the HPN has uncontrollable and/or unobservable transitions, a least
restrictive supervisory policy enforcing inequality constraints on the
underlying PN may not be least restrictive when applied to the HPN.

The ACTS Software and its Supervisory Control Framework 11



Properties

A PN model is said to be normal if it represents explicitly choice.

p1
p3

p4

t 1 t 2
t 5 t 6t 4t 3

p2

t 13

p6

t 4

p8

p12

p9

p

11

p10

p

5 p3

p4p2

p1
t 7

t 1
t 2

t 3
t 8

t 9

t 10 p7

t 6

t 5

t 11

t 12

t 14

The ACTS Software and its Supervisory Control Framework 12



Properties

The bounded wait property is related to liveness.

If the underlying PN of an HPN does not represent explicitly choice,
a supervisory policy preventing deadlock or enforcing T -liveness in the
underlying PN may not prevent deadlock in the HPN.

Consider a HPN in which the underlying PN represents explicitly choice.
A supervisory policy preventing deadlock in the underlying PN will prevent
deadlock also in the HPN.

In general, additional conditions are required to guarantee bounded wait.

Liveness < Responsiveness < With bounded wait

The ACTS Software and its Supervisory Control Framework 13



Conclusions

SC can be applied to concurrency control.

ACTS: free open-source software applying SC to concurrent programming.

In general, traditional SC methods may be suboptimal in the context of
uncontrollable and/or unobservable transitions.

Excepting special cases, traditional SC methods for liveness enforcement
are insufficient.

The ACTS Software and its Supervisory Control Framework 14


