\mathcal{T} -Liveness Enforcement in Petri Nets Based on Structural Net Properties #### Marian V. lordache and Panos J. Antsaklis Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556 iordache.1, antsaklis.1@nd.edu ## **Introduction** Given a PN $\mathcal{N}=(P,T,F,W)$ and $\mathcal{T}\subseteq T$: - (\mathcal{N}, μ_0) is \mathcal{T} -live if all transitions in \mathcal{T} are live. - \mathcal{N} can be made \mathcal{T} -live (or \mathcal{T} -liveness is enforcible in \mathcal{N}) if $\exists \mu_0 \exists$ supervisor Ξ such that $(\mathcal{N}, \mu_0, \Xi)$ is \mathcal{T} -live. - Liveness is \mathcal{T} -liveness for $\mathcal{T} = T$. ## What are the initial markings for which a PN can be made \mathcal{T} -live? $$[C_1:] \mu_1 + \mu_3 \ge 1 (1)$$ $$[C_2:] \mu_2 + \mu_3 \ge 1 (2)$$ $$[C_3:] \quad \mu_1 + \mu_2 + \mu_3 \ge 2$$ (3) The control place (monitor) C_3 is useless. - Let $L\mu \geq b$ describe (1) and (2). - Let $L_0\mu \geq b_0$ describe (3). The PN is live for all initial markings μ_0 satisfying $$L\mu_0 \ge b \text{ and } L_0\mu_0 \ge b_0 \tag{4}$$ when supervised according to the constraint $L\mu \geq b$. ## Defining the \mathcal{T} -liveness enforcing procedure Given an arbitrary PN and \mathcal{T} , the procedure finds matrices L, L_0 , b, b_0 , such that the PN is \mathcal{T} -live for all initial markings μ_0 satisfying $$L\mu_0 \ge b \text{ and } L_0\mu_0 \ge b_0 \tag{5}$$ when supervised according to the constraint $L\mu \geq b$. ## **Theoretical Foundation** ## **Preliminaries** Let $\mathcal{N} = (P, T, F, W)$ be a PN. We call \mathcal{N} PT-ordinary if $$\forall (p,t) \in F \colon W(p,t) = 1$$ ${\mathcal N}$ has asymmetric choice if $$\forall p_1, p_2 \in P \colon p_1 \bullet \cap p_2 \bullet \neq \emptyset \Rightarrow p_1 \bullet \subseteq p_2 \bullet \vee p_2 \bullet \subseteq p_1 \bullet$$ An *active subnet* is a PN subnet which can be made live. Formally: Given $\mathcal{N} = (P, T, F, W)$ of incidence matrix $D, \mathcal{N}^A = (P^A, T^A, F^A, W^A)$ is an active subnet of \mathcal{N} if there is $x \geq 0$, $x \neq 0$, such that $Dx \geq 0$ and $T^A = ||x||$, $P^A = T^A \bullet, F^A = F \cap \{(T^A \times P^A) \times (P^A \times T^A)\}$ and W^A is W restricted to F^A . If $\mathcal{T} \subseteq T^A$ and there is no active subnet $\mathcal{N}_1^A = (P_1^A, T_1^A, F_1^A, W_1^A)$ such that $\mathcal{T} \subseteq T_1^A$ and $T_1^A \subset T^A$, we say that \mathcal{N}^A is a \mathcal{T} -minimal active subnet of \mathcal{N} . $\{t_4, t_5\}$ -minimal active subnet A siphon is a set of places $S \neq \emptyset$ such that $\bullet S \subseteq S \bullet$. S is an active siphon with respect to an active subnet, if it is a siphon which includes one or more places of that subnet. S is a minimal active siphon, if there is no other siphon $S' \subseteq S$ active w.r.t. the same active subnet. The only nonempty active subnet has $T^A = \{t_1, t_2, t_3\}.$ The active siphons are $\{p_1, p_3\}$, $\{p_2, p_3, p_4\}$ and $\{p_1, p_2, p_3, p_4\}$; the first two are also minimal. A siphon S is controlled w.r.t. a set of PN initial markings if for all reachable markings the total marking of S is nonzero. ## **Theoretical Foundation** **Theorem.** Given a PT-ordinary asymmetric-choice net \mathcal{N} , let \mathcal{N}^A be a \mathcal{T} -minimal active subnet. If all minimal active siphons w.r.t. \mathcal{N}^A are controlled, the PN is \mathcal{T} -live. The PN is \mathcal{T} -live for $\mathcal{T} = \{t_1, t_2, t_3\}$. There is a single \mathcal{T} -minimal active subnet \mathcal{N}^A (the one with $T^A=\mathcal{T}$.) All minimal active siphons w.r.t. \mathcal{N}^A are controlled: $\{p_1, p_3\}$, $\{p_1, p_4\}$, $\{p_2, p_3, p_6\}$, and $\{p_2, p_5, p_6\}$ **Procedure** Operations \mathcal{T} -liveness supervisors are generated by iteratively correcting deadlock situations. This involves the following: - 1. siphon control - 2. transformations to PT-ordinary and asymmetric choice Petri nets - 3. active subnet computation **Siphon control:** at every iteration, all uncontrolled minimal active siphons S are controlled by enforcing: $$\sum_{p \in S} \mu(p) \ge 1 \tag{6}$$ Depending on the structural properties, (6) can be enforced by adding a **control place** (monitor) to the PN or by only requiring the initial marking to satisfy (6). C_1 controls $\{p_1, p_3\}$ and C_2 controls $\{p_2, p_3\}$. $$\{C_1, p_2\}$$ and $\{C_2, p_1\}$ controlled by requiring $\mu_0(C_1) + \mu_0(p_2) \ge 1$ and $\mu_0(C_2) + \mu_0(p_1) \ge 1$ #### Transformation to PT-ordinary PNs In the example, any inequalities on the original PN are changed as follows: $$\mu(p_1) \longrightarrow \mu(p_1)$$ $\mu(p_2) \longrightarrow \mu(p_2) + \mu(p_{1,1})$ $\mu(p_3) \longrightarrow \mu(p_3) + \mu(p_{1,2}) + 2\mu(p_{1,1})$ #### Transformation to AC nets In the example, any inequalities on the original PN are changed as follows: $$\mu(p_1) \longrightarrow \mu(p_1) + \mu(p_3)$$ $\mu(p_2) \longrightarrow \mu(p_2)$ In general: $$\mu(p_i) \longrightarrow \mu(p_i) + \sum_j k_j \mu(p_{i,j})$$ The computation of a \mathcal{T} -minimal active subnet reduces to: Find $x \geq 0$, $x_i > 0 \ \forall t_i \in \mathcal{T}$, such that $Dx \geq 0$ and there is no other $y \geq 0$, $Dy \geq 0$, $y_i > 0 \ \forall t_i \in \mathcal{T}$, such that $||y|| \subset ||x||$. At every iteration the active subnet is updated by repeating the changes done to the PN in the active subnet. Procedure Outline **Input:** The target PN \mathcal{N}_0 and the set \mathcal{T} **Output:** Two sets of constraints (L, b) and (L_0, b_0) #### repeat 1. Transform the current net to a PT-ordinary AC PN. - 2. Compute the T-minimal active subnet. - 3. For every uncontrolled minimal active siphon S do If S needs to be controlled with a control place then add control place to Petri net and inequality in (L,b). **Else** add inequality to (L_0, b_0) . **until** no uncontrolled minimal siphon is found at 2. Restrict the constraints (L,b) and (L_0,b_0) to the places of \mathcal{N}_0 . ${\mathcal T}$ -liveness is enforced for all initial markings μ_0 such that $$L\mu_0 \geq b$$ and $L_0\mu_0 \geq b_0$ by supervising \mathcal{N}_0 according to $L\mu \geq b$. ### **Theoretical Results** **Theorem.** The supervisors generated by the \mathcal{T} -liveness procedure enforce \mathcal{T} -liveness. **Theorem.** Given a PN and \mathcal{T} , if the PN has a single \mathcal{T} -minimal active subnet and the procedure terminates, the generated supervisor is least restrictive. A supervisor generated by the procedure is said to be least restrictive when: ullet The set of initial markings μ_0 for which liveness is enforcible is $$L\mu_0 \ge b \wedge L_0\mu_0 \ge b_0 \tag{7}$$ • For all initial markings μ_0 satisfying (7), there is no \mathcal{T} -liveness enforcing supervisor less restrictive. # $\mathcal{T}\text{-Liveness}$ Enforcement Example $$L = [2, 2, 1]$$, $b = 2$, $L_0 = [\,]$ and $b_0 = [\,]$ ## **Performance** - + The procedure makes no assumption on the PN structure; it is applicable to PNs which may be unbounded and generalized. Furthermore, it can be extended to PNs with uncontrollable and unobservable transitions. - + The procedure does not assume a given initial marking, but rather provides the constraints that the initial markings must satisfy for the supervisor to be effective. - + If the procedure terminates and the PN has a single \mathcal{T} -minimal active subnet, the procedure provides the least restrictive \mathcal{T} -liveness enforcing supervisor. - + When the procedure is used for liveness enforcement, the whole net is the single \mathcal{T} -minimal active subnet. Therefore, the supervisors generated by the procedure in this case are least restrictive. - Procedure termination is not guaranteed. - The procedure will not terminate for any PN with a single \mathcal{T} -minimal active subnet and with the property that the set of markings for which \mathcal{T} -liveness can be enforced is not the set of integer points of a polyhedron. #### **Performance** - The procedure may perform in each iteration computationally expensive operations (checking whether a siphon is uncontrolled may involve solving integer programs; finding the minimal siphons of a PN may also be computationally complex). - + All computations are performed off-line. Very little computation is required to run a supervisor on-line. - + The procedure allows fully automated computer implementation (and we have implemented it).