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Introduction Scope of the Work

We consider the following liveness properties of a PN:

1. Deadlock-freedom

2. Liveness

3. T -liveness (i.e. the transitions in a set T are live)

We are interested in supervisors of the PN which enforce either of these properties. We

present new theoretical results related to this problem.

The talk is organized as follows:

1. Conditions for Deadlock Prevention and Liveness Enforcement

2. Deadlock and Liveness Characterization of PNs Based on Active Subnets

3. Implications for Supervisor Synthesis
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Introduction Motivation

Why be interested in PN supervisors?

Supervisors force a system to satisfy desirable

properties (such as deadlock-freedom and safety

constraints) by restricting the range of the inputs

of the system as a function of the system state.

A Control Paradigm:

1. Start with a PN model of the system

2. Enforce safety constraints such that the super-

vised PN is still a PN

3. Find a liveness supervisor

Control Events
inputs

SUPERVISOR

SYSTEM (OR PLANT)

COMPUTER PROGRAM

SYSTEM PN MODEL
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Introduction Preliminaries

How to define a supervisor of a PN?

Input: The current marking µ (the state) and the firing sequence σ (the history) such

that µ0
σ−→ µ.

Output: The transitions t which may fire, if enabled.

In our problem it turns out that without loss of performance, we can restrict our attention

to marking based supervisors, which depend only on the current marking.

Definition. Let N = (P, T, F,W ) be a Petri net,M the set of all markings of N ,
M0 ⊆ M and U ⊆ M × T ∗ such that ∀µ0 ∈ M0: (µ0, ε) ∈ U . A supervisor
is a map Ξ : U → 2T such that ∀(µ, σ) ∈ U ∀t ∈ Ξ(µ, σ), if µ t−→ µ′, then
(µ′, σt) ∈ U . We say thatM0 is the set of initial markings for which Ξ is defined.

We also say that Ξ is a marking based supervisor if Ξ(µ, σ) depends only on µ and
∀(µ, σ) ∈ U : {µ} × T ∗ ⊆ U .
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Introduction Preliminaries

The following type of supervisors will be considered:

- deadlock prevention supervisors

- liveness enforcing supervisors

- T -liveness enforcing supervisors

Some of the results apply to particular classes of PNs:

Let N = (P, T, F,W ) be a PN.

We call N PT -ordinary if for all
(p, t) ∈ F : W (p, t) = 1.

A deadlocked PT -ordinary PN con-

tains an unmarked siphon. NOT PTOPTO
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N has asymmetric choice if for all
places p1 and p2, if p1 • ∩p2• 6= ∅
then p1• ⊆ p2• or p2• ⊆ p1•.

A PT -ordinary PN with asymmetric

choice is live if and only if all siphons

are controlled.
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Introduction Preliminaries

We will not restrict our attention to bounded PNs or to repetitive PNs.

A PN is (partially) repetitive if there is a marking µ0 and a firing sequence σ from
µ0 such that every (some) transition occurs infinitely often in σ.

A PN of incidence matrix D is (partially) repetitive iff a vector x of positive (nonnegative)

integers exists, such that Dx ≥ 0 and x 6= 0.

repetitive not (partially) repetitivepartially repetitive
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Deadlock Prevention and Liveness Enforcing Conditions

Proposition. Let N = (P, T, F,W ) be a Petri net.
(a) Initial markings µ0 exist s.t. deadlock can be prevented in (N , µ0) iff N is partially
repetitive.

(b) Initial markings µ0 exist s.t. liveness can be enforced in (N , µ0) iff N is repetitive.
(c) Initial markings µ0 exist such that T -liveness can be enforced in (N , µ0) iff there
is an initial marking µ0 enabling an infinite firing sequence in which all transitions

of T appear infinitely often.

Lemma. Let N = (P, T, F,W ) be a PN of incidence matrix D. Assume that there
is an initial marking µI enabling an infinite firing sequence σ. Let U ⊆ T be the set
of transitions which appear infinitely often in σ. There is a nonnegative integer vector

x such that

(a) Dx ≥ 0, ∀ti ∈ U : x(i) 6= 0 and ∀ti ∈ T \ U : x(i) = 0.
(b) there is a firing sequence σx containing only the transitions with x(i) 6= 0, such
that ∃µ∗1, µ∗2 ∈ R(N , µI): µ∗1 σx−→ µ∗2, each transition ti appears x(i) times in
σx, σ can be written as σ = σaσxσb, and µI

σa−→ µ∗1.
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Deadlock Prevention and Liveness Enforcing Conditions

(P1) (∃σ ∃µ′1, µ1 ∈ R(N , µ): µ1 σ−→ µ′1 and µ′1 ≥ µ1)
(P2) (∃σ ∃µ′1, µ1 ∈ R(N , µ): µ1 σ−→ µ′1, µ′1 ≥ µ1 and all transitions of T are in σ)
(P3) (∃σ ∃µ′1, µ1 ∈ R(N , µ): µ1 σ−→ µ′1, µ′1 ≥ µ1 and all transitions of Tx are in σ)

Theorem. Let N = (P, T, F,W ) be a PN and Tx ⊆ T .
(a) Deadlock can be prevented in (N , µ) iff (P1) is true.
(b) Liveness can be enforced in (N , µ) iff (P2) is true.
(c) Tx-liveness can be enforced in (N , µ) iff (P3) is true.
(d) Let µ0 be an arbitrary marking for which liveness can be enforced, ΞL the least

restrictive liveness enforcing supervisor of (N , µ0), and S the set of all deadlock
prevention supervisors of (N , µ0) at least as permissive as ΞL. Then all Ξ ∈ S
enforce liveness in (N , µ0) iff ∀µ ∈ R(N , µ0): (P1)⇒ (P2).

(e) Let µ0 be an arbitrary marking for which Tx-liveness can be enforced, ΞL the least

restrictive Tx-liveness enforcing supervisor of (N , µ0), and S the set of all deadlock
prevention supervisors of (N , µ0) at least as permissive as ΞL. Then all Ξ ∈ S
enforce Tx-liveness in (N , µ0) iff ∀µ ∈ R(N , µ0): (P1)⇒ (P3).

8



DP & LE Conditions

Theorem. Let N = (P, T, F,W ) be a PN, D its incidence

matrix, Tx ⊆ T , n = |T |, and:
M = {x ∈ Zn+ : x 6= 0, Dx ≥ 0}
N = {x ∈M : ∀i = 1 . . . n : x(i) 6= 0}
P = {x ∈M : ∀ti ∈ Tx : x(i) 6= 0}.

(a) The following statements are equivalent:

(i) M 6= ∅ and M = N

(ii) supervisors which prevent deadlock exist for some initial

marking, and for all such initial markings µ0 all

supervisors preventing deadlock in (N , µ0) also enforce
liveness in (N , µ0)

(b) The following statements are equivalent:

(i) M 6= ∅ and M = P

(ii) supervisors which prevent deadlock exist for some initial

marking, and for all such initial markings µ0 all

supervisors preventing deadlock in (N , µ0) also enforce
Tx-liveness in (N , µ0)

(c) The following statements are equivalent:

(i) N 6= ∅ and N = P
(ii) supervisors which enforce Tx-liveness exist for some

initial marking, and for all such initial markings µ0
all supervisors enforcing Tx-liveness in (N , µ0) also
enforce liveness in (N , µ0)
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DP & LE Conditions Examples
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for α1, α2 ≥ 0.

(P1)⇒ (P2)
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DP & LE Conditions

Theorem. Consider a Petri net N = (P, T, F,W ) which is not repetitive. At least
one transition exists such that for any initial marking it cannot fire infinitely often. Let

TD be the set of all such transitions. There are initial markings µ0 and a supervisor Ξ

such that ∀µ ∈ R(N , µ0,Ξ) no transition in T \ TD is dead.
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TD = {t1, t2, t3, t6}
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Active Subnet Characterization Definition

Given N = (P, T, F,W ) of incidence matrix D, NA = (PA, TA, FA,WA) is an

active subnet of N if there is x ≥ 0, x 6= 0, such that Dx ≥ 0 and TA = ‖x‖,
PA = TA•, FA = F ∩{(TA×PA)× (PA×TA)} andWA isW restricted to FA.

If all nonnegative vectors y satisfying Dy ≥ 0 satisfy also ‖y‖ ⊆ ‖x‖, NA is the
maximal active subnet. If no such vector y 6= x satisfies ‖y‖ ⊂ ‖x‖, NA is a
minimal active subnet.

If Tx ⊆ TA and there is no other active subnet NA1 = (PA1 , TA1 , FA1 ,WA
1 ) such that

Tx ⊆ TA1 and TA1 ⊂ TA, we say that NA is a Tx-minimal active subnet of N .
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Active Subnet Characterization Siphons

We say that S is an active siphon w.r.t. the active subnet NA if S is a siphon and
S ∩ PA 6= ∅. We say that S is minimal if there is no other active siphon S′ w.r.t. NA
such that S′ ⊆ S.

The only nonempty active subnet

has TA = {t1, t2, t3}.
The active siphons are {p1, p3},
{p2, p3, p4} and {p1, p2, p3, p4};
the first two are also minimal.
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Proposition. A siphon which contains places from an active subnet is an active siphon
with respect to that subnet.
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Active Subnet Characterization Deadlock

Prior necessary condition for deadlock:

A deadlocked ordinary Petri net has an empty siphon.

New extension based on active siphons:

Proposition. Let NA be an arbitrary active subnet of a PT-ordinary Petri net N . If µ
is a deadlock marking of N , then there is an empty minimal active siphon with respect
to NA.

Our result detects that the PN is not in deadlock, even

though there are two empty siphons: {p4} and {p5}:

The only minimal active siphon is {p1, p3}, which is
not empty.
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Active Subnet Characterization Deadlock

New sufficient condition based on active siphons:

Proposition. Deadlock is unavoidable for the marking µ if for all minimal active
subnets NA there is an empty active siphon with respect to NA.
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Active siphons:

W.r.t. the first subnet:

{p6, p7, p8} is not empty
{p1, p5, p6, p7} is empty

W.r.t. the second subnet:

{p1, p2, p3} is empty
Therefore, deadlock!
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Active Subnet Characterization Liveness

Prior result:

If t is dead in (N , µ) and N is ordinary and with asymmetric choice, there is a

reachable marking such that a siphon is empty.

New extension relating t to the empty siphon:

Theorem. Consider a PT-ordinary asymmetric-choice Petri net N and a marking µ
such that a transition t is dead. Then there is µ′ ∈ R(N , µ) such that S is an empty
siphon for the marking µ′ and t ∈ S•.
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t1 is dead. The siphon S =

{p1, p3, p4} is emptied by firing
t4, t6, and t1 ∈ S•.
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Active Subnet Characterization T-Liveness

Theorem. Given a PT-ordinary asymmetric-choice net N , let T be a set of transitions
and NA a T -minimal active subnet which contains the transitions in T . If all the
minimal siphons with respect to NA are controlled, the PN is T -live (and TA-live). If
the PN is T -live, there is no reachable marking such that for each T -minimal active

subnet NA there is an empty minimal active siphon with respect to NA.
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p21p The PN is T -live for T = {t1, t2, t3}.

Indeed, there is a single T -minimal active subnet

NA (the one with TA = T .)

All minimal active siphons w.r.t. NA are controlled:
{p1, p3}, {p1, p4}, {p2, p3, p6}, and {p2, p5, p6}
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Implications

Even though our previous results may apply to particular classes of PNs (PT-ordinary

and/or asymmetric-choice nets), we can still use them for the synthesis of supervisors for

arbitrary PNs.

The following problems can be approached:

• Deadlock prevention
• Least restrictive deadlock prevention
• Least restrictive T -liveness enforcement
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Implications Supervisor Synthesis

Input: The target Petri net N0
Output: Two sets of constraints (L, b) and (L0, b0)

For deadlock prevention, take the active siphons w.r.t. the

maximal active subnet; for T -liveness enforcement, take

them w.r.t. a T -minimal active subnet.

repeat

1. Transform the current net to a PT-ordinary Petri net.

In addition, in the case of T -liveness enforcement,

transform the current net to have asymmetric choice.

2. For every uncontrolled minimal active siphon S do

If S needs to be controlled with a control place then
add control place to PN and inequality in (L, b).

Else
add inequality to (L0, b0).

until no uncontrolled minimal siphon is found at 2.

Restrict the final constraints (L, b) and (L0, b0) to the

places of the target PN N0.

Deadlock is prevented (T -liveness is enforced) for all initial

markings µ0 such that Lµ0 ≥ b and L0µ0 ≥ b0, by supervising
N0 with Lµ ≥ b.
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Implications Least Restrictive Deadlock Prevention

Let Ξ1, Ξ2, . . . Ξu be u marking based supervisors.

Assume each supervisor to be defined for initial markings in the setsM1,M2, . . .Mu.

We denote by Ξ =
u∨
i=1

Ξi the supervisor defined for initial markings inM =
⋃

i=1...u

Mi

which allows a transition t to fire at the marking µ only if at least one of the supervisors

Ξi defined at µ allows t to fire.

Theorem. Let N0 be a PN and NAi , for i = 1 . . . u, the minimal active subnets of
N0. Let Ti denote the set of transitions of NAi and let Ξi, for i = 1 . . . u, be deadlock
prevention supervisors. Assume that each Ξi is defined for all initial markings for

which Ti-liveness can be enforced and that each Ξi is at least as permissive as any

Ti-liveness enforcing supervisor. Then Ξ =
u∨
i=1

Ξi is the least restrictive deadlock

prevention supervisor of N0.
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Implications Deadlock Prevention Example
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The supervisor is defined by:

µ(p1) + µ(p3) + µ(p4) ≥ 1
µ(p2) + µ(p3) + µ(p5) ≥ 1
µ(p2) + µ(p3) + µ(p6) ≥ 1

µ0(p1) + µ0(p2) + µ0(p3) + µ0(p4) + µ0(p5) ≥ 2
µ0(p1) + µ0(p2) + µ0(p3) + µ0(p4) + µ0(p6) ≥ 2
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Implications Least Restrictive DP Example
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The supervisor is Ξ = Ξ1 ∨ Ξ2 ∨ Ξ3 where:

Ξ1 is defined by: (T
A
1 = {t1, t2})

µ1 + µ2 + µ5 + µ6 ≥ 1
µ1 + µ2 + µ3 + µ4 + µ5 + µ7 ≥ 1

Ξ2 is defined by: (T
A
2 = {t3, t4})

µ3 + µ4 + µ5 + µ7 ≥ 1
µ1 + µ2 + µ3 + µ4 + µ5 + µ6 ≥ 1

Ξ3 is defined by: (T
A
3 = {t2, t4, t5, . . . t9})

µ1 + µ2 + µ5 + µ6 ≥ 1
µ3 + µ4 + µ5 + µ7 ≥ 1∑

i=1...7

µ0,i ≥ 2
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Implications Least Restrictive T -LE Example
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The supervisor is defined by

2µ1 + 2µ2 + 2µ3 + µ4 + µ5 + µ6 + 2µ7 ≥ 2
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Conclusions

The relation between deadlock prevention and liveness enforcement has been characterized.

A class of subnets and siphons has been defined. This has allowed extending existing

results to nonrepetitive PNs. Specifically we have presented:

• Necessary and sufficient conditions for deadlock in PT-ordinary PNs
• Necessary and sufficient conditions for T -liveness in PT-ordinary asymmetric-choice
PNs.

An extension of the Commoner’s Theorem has also been presented.

The presented theoretical results can be used to supervise arbitrary PNs for

• deadlock prevention and least restrictive deadlock prevention
• T -liveness enforcement and least restrictive T -liveness enforcement
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