
Concurrent Program Synthesis Based on Supervisory
Control

Marian V. Iordache

School of Engineering and Eng. Tech.

LeTourneau University

Longview, TX 75607-7001

Panos J. Antsaklis

Department of Electrical Engineering

University of Notre Dame

Notre Dame, IN 46556

July 1, 2010

Concurrent Program Synthesis Based on Supervisory Control 1



Motivation

• Tools for converting sequential programs to parallel programs are
available.

• Often programs are not nearly as efficient as when written from the
beginning as parallel programs.

• However, concurrent programming is known to be difficult.

Concurrent Program Synthesis Based on Supervisory Control 2



Motivation

• Concurrent programming is difficult because of shared resources.

• These can cause race conditions.

• Race conditions denote the situations in which the result depends on the
order of execution of concurrent operations.

Concurrent Program Synthesis Based on Supervisory Control 3



Motivation Race Conditions

PROCESS #1

...

(1) u = x

(2) u = u + 10

(3) x = u
...

PROCESS #2

...

(a) v = x

(b) v = v + 20

(c) x = v
...

• Initial value of shared variable x is x = 30.

• Correct result: x = 60.

• Possible results:

◦ x = 40 for operation sequence (1), (a), (2), (b), (c), (3).

◦ x = 50 for operation sequence (1), (a), (2), (3), (b), (c).

◦ x = 60 for operation sequence (1), (2), (3), (a), (b), (c).

Concurrent Program Synthesis Based on Supervisory Control 4



Motivation Problems

• Locks can be used to ensure that critical operation sequences are not
interrupted.

– Generally, it is difficult to find the best way to use locks in a program.
– Improper use of locks may result in
∗ deadlocks;
∗ sequential execution of parallel code.

• Concurrent programs are hard to debug.

Concurrent Program Synthesis Based on Supervisory Control 5



Proposed Solution

• Use a high level description of the problem (to avoid the complexity of
low level details).

The programmer describes what he would like to do.

• Obtain a formal model from specs (Petri nets).

This step is performed automatically.

• Generate automatically the low level code that implements the specs.

Formal approach: Supervisory Control.

Concurrent Program Synthesis Based on Supervisory Control 6



Approach

PROCESS 2

. .
 .

. .
 .

signals

. .
 .

. . .

PROCESS 1

COORDINATOR PROCESS

. .
 .

PROCESS M

. .
 .

. .
 .

Concurrent Program Synthesis Based on Supervisory Control 7



Approach

CODE GENERATION

DES AND SUPERVISOR

SUPERVISORY CONTROL

ANALYSISSC SPECS DES MODEL (PLANT)

HLL SPECIFICATION

Concurrent Program Synthesis Based on Supervisory Control 8



Specification

The specification describes how the concurrent processes should be coordinated.

The specification describes the problem (what to do) not the solution (how to do).

Each process consists of blocks of low level code (functions).

The specification gives:

1. the blocks of low level code of each process;

2. constraints on the order of execution of these blocks.

A custom high level language (HLL) is used for the specification.

Note that high level descriptions do not define explicitly PNs.

Rather, PNs are automatically extracted from the specification.

Concurrent Program Synthesis Based on Supervisory Control 9



Specification Example

Synchronization problem (adapted from [Downey, 2008]):

• Shared data accessed by reader, inserter, and deleter processes.

• At any time, only one inserter may modify the data.

• At any time, only one deleter may modify the data.

• Readers and inserters may not access the shared data at the same time
as a deleter.

Concurrent Program Synthesis Based on Supervisory Control 10



Specification Example

1. process p reader {

2. s1 to scr;

3. scr to s2;

4. s2 to s1;

5. }

6.

7. process p inserter = p reader; /* Initialize p inserter */

8. p inserter { /* Enhance the DES of p inserter */

9. scr <= 1; /* this restricts both p inserter and its copies */

10. }

11.

12. process p deleter = p inserter;

13. p deleter.scr EXCLUDES p inserter.scr p reader.scr;

14.

15. COPIES OF p inserter: pi1, pi2;

16. COPIES OF p deleter: pd1, pd2;

17. COPIES OF p reader: pr1, pr2, pr3, pr4;

Concurrent Program Synthesis Based on Supervisory Control 11



Specification Example

1. process p reader {

2. s1 to scr;

3. scr to s2;

4. s2 to s1;

5. }

READER PROCESS

s1

scr s2

• This segment of code defines a process and a process type.

• Process: a sequential program.

• Processes implemented as executable programs or threads.

• Processes having the same executable code are said to have the same process type.

• Process types: modeled by PN structures.

• Processes: modeled by tokens.

• PN places model stages of execution of a process.

Concurrent Program Synthesis Based on Supervisory Control 12



Specification Example

• The inserter process has the same structure as the

reader process.

• Thus, it is initialzed to equal the reader process.

process p inserter = p reader;

INSERTER PROCESS

s1

scr s2

• Only one inserter may be in the critical section.

• The following restricts all processes having the type

of p inserter.

p inserter {

scr <= 1;

}

• The constraint is implemented by the supervisor

process.

s1

SUPERVISOR
TWO INSERTERS WITH 

s2scr

Concurrent Program Synthesis Based on Supervisory Control 13



Specification Example

• The deleter process has the same structure as the inserter process.

• Thus, it is initialzed to equal the reader process.

process p deleter = p inserter;

• A deleter may not be in the critical region together with a reader or an inserter.

p deleter.scr EXCLUDES p inserter.scr p reader.scr;

6

s1

scr s2

s1

scr s2

FIVE READERS THREE INSERTERSTHREE DELETERS

s1

scr s2

6

Concurrent Program Synthesis Based on Supervisory Control 14



Specification Example

• Each process copy counts as an additional token in the PN of the process type.

COPIES OF p inserter: pi1, pi2;

COPIES OF p deleter: pd1, pd2;

COPIES OF p reader: pr1, pr2, pr3, pr4;

• In this example, the plant consists of state machines.

• In general, this may not be the case.

Concurrent Program Synthesis Based on Supervisory Control 15



Petri Nets Synchronization

c

a

g
b

e

a

b

c d

e

g

f

d

b

TYPE A

e

g

f

hh

COMPOSITIONTYPE B TYPE C

2p1

p4

2pp1 p3

p8
p7

p4 p5

p6p6

p8

p p3

p5

p7

• Interprocess synchronization is possible.

Synchronizations −→ PNs that are not state machines.

• Sink transitions: model process termination.

• Source transitions: model events that start processes.

Concurrent Program Synthesis Based on Supervisory Control 16



Petri Nets Modeling

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

NONDETERMINISTIC CHOICE DETERMINISTIC CHOICE

(fork)

PROCESS CREATION

TERMINATION

CREATION

OPERATION

SEQUENCE

SYNCHRONIZATION

Transitions 3 and 4 may

1 and 2 have fired.

take place only after both

transitions
controllable uncontrollable

transitions

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

t1 t2 t1 2

t1 t2

t3 t4

t

Concurrent Program Synthesis Based on Supervisory Control 17



Supervisory Control Application to Software

Specific software requirements:

• Execution with finite memory (SC should guarantee boundedness).

• Parallel code is not serialized (permissive supervisor).

• Software should be responsive (liveness + fairness).

Disjunctive constraints important (so that general specs can be represented).

Methods for partial controllability important, esp. for liveness enforcement.

Concurrent Program Synthesis Based on Supervisory Control 18



Approach

CODE GENERATION

DES AND SUPERVISOR

SUPERVISORY CONTROL

ANALYSISSC SPECS DES MODEL (PLANT)

HLL SPECIFICATION

Concurrent Program Synthesis Based on Supervisory Control 19



Approach

..
..

. ..

.

.

SPECS FILE CODE

GENERATION

HPN 1

HPN 2

HPN N

SUPERVISORY

CONTROL SUPERVISOR

SUPERVISOR.C

PROC−TYPE−1.C

PROC−TYPE−N.C

PROC−TYPE−2.C

SC SPECS

ANALYSIS

Concurrent Program Synthesis Based on Supervisory Control 20



How It Is Used

.

.. ..
.

MAKE FILE

MAKE

SUPERVISOR.C

LIBRARIES

SPECS FILE

PROC−TYPE−1.EXEPROC−TYPE−1.C

PROC−TYPE−N.C

SUPERVISOR.EXE

SOFTWARE
SYNTHESIS
TOOLS

PROC−TYPE−N.EXE

Concurrent Program Synthesis Based on Supervisory Control 21



Code Generation

• The implementation of the supervisor process is more involved.

• The supervisor process

– performs synchronization of user processes;
– implements the SC policies.

• Computational overhead should be small.

– Limitation on the complexity of supervisor operations performed online.
– Decentralized supervision can be used to distribute operations between

several supervisors.

• Fairness: partially ensured by considering requests in the order in which
they come.

Concurrent Program Synthesis Based on Supervisory Control 22



Final Remarks

• Constraints on the operation of concurrent processes can be expressed
as SC specifications.

• SC can help automate concurrent program synthesis.

• Software tools for concurrent program synthesis are under development.

http://www.letu.edu/people/marianiordache/acts

• Of special interest are SC methods for

– liveness and fairness constraints
– disjunctive constraints
– decentralized supervision.

Concurrent Program Synthesis Based on Supervisory Control 23


